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X-ray microtomography study of the compaction process of rods under tapping
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We present an x-ray microtomography study of the compaction process of cylindrical rods under tapping. The
process is monitored by measuring the evolution of the orientational order parameter, local, and overall packing
densities as a function of the tapping number for different tapping intensities. The slow relaxation dynamics of
the orientational order parameter can be well fitted with a stretched-exponential law with stretching exponents
ranging from 0.9 to 1.6. The corresponding relaxation time versus tapping intensity follows an Arrhenius behavior
which is reminiscent of the slow dynamics in thermal glassy systems. We also investigated the boundary effect on
the ordering process and found that boundary rods order faster than interior ones. In searching for the underlying
mechanism of the slow dynamics, we estimated the initial random velocities of the rods under tapping and
found that the ordering process is compatible with a diffusion mechanism. The average coordination number as
a function of the tapping number at different tapping intensities has also been measured, which spans a range
from 6 to 8.
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I. INTRODUCTION

Other than having important industrial applications, under-
standing of the compaction process of granular materials has
also attracted a lot of scientific interest recently. The close
analogy of the slow dynamics displayed by granular materials
under compaction with thermal glassy dynamics suggests a
unifying jamming concept [1,2]. The compaction dynamics
can also be used to verify possible thermodynamic descriptions
of the naturally out-of-equilibrium granular systems [3].
Extensive experimental and theoretical studies have been
carried out in understanding the compaction dynamics [1]:
mechanisms based on free volume [4], the parking-lot model
[5], etc., have been proposed; numerical simulations also
offered great insight [6–8]. Phenomenologically, compaction
proceeds through the filling of large voids in the packing
and the reduction of free volume around a particle. As the
packing gets denser, it entails the cooperative movements of
an increasing number of particles and the associated relaxation
time diverges exponentially [5].

Recently, there has been growing interest in using micro-
scopic information to interpret the compaction process with
the development of three-dimensional visualization techniques
such as x-ray tomography [9–12]. Detailed study of particle-
level dynamic [13], structural [9], and force [11] information
can provide invaluable knowledge to the understanding of the
compaction dynamics. In particular, it has been noted that
both spatial and temporal heterogeneities have been identified
as intrinsic features of granular dynamics [7,14].

Most of the past efforts on the compaction process have
been focused on spherical particles [15,16]. In reality, granular
particles are rarely perfectly spherical, and nonspherical
particle packings have displayed many behaviors which are
significantly different from their spherical counterparts. For
instance, both spherocylinders and ellipsoids have maximum
random packing fractions higher than the ρrcp ≈ 0.64 limit
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of spherical ones [17]. In packings made up of long rods,
the rods tend to align with each other through an excluded-
volume interaction [18]. Therefore, it can exhibit high degrees
of ordering upon tapping under certain circumstances [19].
Nevertheless, the relaxation dynamics of nonspherical particle
packings under tapping is very similar to that of spherical ones
[15–18]. Therefore, the study of the compaction dynamics in
nonspherical particle packings can provide different paradigms
for the understanding of the universal compaction mechanism.

Different experimental laws have been proposed to interpret
the macroscopic compaction dynamics. The packing density
ρ of a spherical packing under tapping has been suggested by
the Chicago group to follow an inverse logarithmic law [16]

ρ(t) = ρf − ρ0 − ρf

1 + B ln(1 + t/τ )
, (1)

where ρf and ρ0 are the packing densities of the final and the
initial states, respectively, B is a fitting constant depending
on the dimensionless tapping intensity �, which is defined
as the ratio between the measured peak acceleration and the
gravitational acceleration g, and τ is the relaxation time of the
exponential law with the unit of one tap. This behavior was
found to be consistent with the free volume model [4].

Later studies by the Rennes group [15,20] have also found
in both spherical and nonspherical packings that ρ can be well
fitted with a stretched-exponential Kohlrausch-Williams-Watts
law (KWW law)

ρ(t) = ρf − (ρf − ρ0) exp

[
−

(
t

τ

)β]
, (2)

where β is the stretching exponent. The KWW law has usually
been employed in the description of the slow dynamics in
thermal glassy systems, so the close analogy of the compaction
dynamics in two disparate systems implies a close connection
between them. The different compaction dynamics observed
by the aforementioned two groups has been attributed to the
different containers used: In the Chicago group’s experiment,
the container was a very long tube with a small diameter
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comparable with the particle size which prohibits convection.
In the Rennes group’s experiment, the container’s diameter
was much larger than the particle size, which significantly
reduces the boundary effect. Instead, strong convection has
been observed and the compaction dynamics is attributed to
a convection-mediated mechanism; the corresponding relax-
ation time τ is suggested to be determined by the convection
speed [22]. A similar stretched-exponential behavior has
also been identified in studies of the compaction of two-
dimensional granular particles [21,23]. However, no boundary
or convection effect was observed [21,23]. Therefore, it is
interesting to resolve these differences.

Due to the experimental difficulty in tracking the three-
dimensional granular packing structure noninvasively, there
has been a lack of experimental results on the microscopic
compaction dynamics. Instead, the ordering process has been
investigated primarily using macroscopic parameters such as
packing density or volume fraction. Since the understanding of
the compaction process using statistical mechanics ultimately
requires the knowledge of distributions on the particle level,
obviously, substantial information can be gained by directly
investigating the microscopic structure and dynamics.

In this paper, we exploit x-ray microtomography [24]
to study the compaction dynamics of a three-dimensional
packing consisting of cylindrical rods under tapping. This
paper is organized as follows. In Sec. II, we describe the
experimental setup and the sample preparation procedure.
In Sec. III, we present the behaviors of the packing density
and vertical order parameter as a function of the tapping
number, together with the fitting results using the KWW and
the inverse logarithmic laws. We discuss the boundary effect
on the ordering process in Sec. IV. In Sec. V, we discuss
the Arrhenius behavior of the relaxation time as a function of
tapping intensity. We also present measurements of the rods’
random velocities during one tap and a possible diffusion
mechanism of the slow ordering dynamics. In Sec. VI, we
discuss the average coordination number of the packing as a
function of the tapping number for different tapping intensities.
We summarize our findings in Sec. VII.

II. EXPERIMENTAL SETUP AND PROCEDURE

We performed the experiment using uniform-sized nylon
rods which are 1.0 mm in diameter and 4.0 mm in length.
Each rod weighs around 3.5 mg. Approximately 350 rods
were filled into a 50-mm-tall acrylic tube (10 mm inner
diameter) mounted vertically on an electromagnetic exciter.
The disordered packing has an initial height of ∼34 mm.
The experimental setup and protocol are similar to those of
Villarruel et al. [19] in terms of the rod size, the rod’s aspect
ratio, and the rod and container size ratio. The major difference
lies in the much smaller filling height in our case.

A single cycle of a 30-Hz sine wave was output from a signal
generator to drive the exciter, producing individual shaking
or “tapping.” Successive taps are spaced with 1.0 s intervals
to allow the system to relax completely. In order to reduce
electrostatic charges, the rods were grounded on aluminum
foil before each experimental run.

The evolution of the rods’ ordering process under tap-
ping was studied by an x-ray microtomography setup

(MicroXCT-200, Xradia Inc.). In our experiment, the voltage
and the power of the x-ray tube were set at 40 kV and 8 W,
respectively. The effective spatial resolution of the detector
was 10.16 μm after optical magnification (2 × ). The imaging
window has a field of view of 10.4 × 10.4 mm2 and was
positioned at the medium height of the packing. There are
about 90 rods within the x-ray imaging window. We took
1200 projection images around the sample and the exposure
time was set to 20 s for each projection image. The rods were
tapped a total of 104 times for different � and tomography was
conducted at several tapping numbers t for every �. Before
each run, the container was first emptied and then refilled to
form an initially disordered packing.

III. PACKING DENSITY AND ORDER PARAMETER

Figures 1(a) and 1(b) show the three-dimensional recon-
structed packing structure before and after 104 times of tapping
at � = 3.41, which illustrates the onset of the vertical ordering.
The tomogram at the medium height of the reconstructed
structure is shown in Fig. 1(c), and Fig. 1(d) is a simple image
segmentation of Fig. 1(c) using a thresholding technique.

The global packing density ρH is calculated using the total
filling height H of rods in the tube. Figure 2(a) shows the
evolution of ρH as a function of tapping number t for different
�. In general, ρH increases monotonically with t . As shown
in Fig. 2(b), the maximum ρH = 0.52 can be reached at � =
2.37 after 104 times of tapping. It is noted that the final ρH

is fairly low for all � investigated. This is owing to the fact
that we have a small number of layers in the packing and the
surface height measurements were sensitively dependent on
the loosely packed surface layers. We can also directly obtain
the local packing density ρS using the ratio between the volume
occupied by the rods and the total container volume within

FIG. 1. X-ray tomography reconstructed rods’ packing structure
(a) before tapping, and (b) after 104 taps. (c) Tomogram at the medium
height of reconstructed structure. (d) Image segmentation of (c) using
simple thresholding.
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FIG. 2. (Color online) (a) Evolution of the packing density ρH as a function of the tapping number for different tapping intensities.
(b) Final packing density ρH and ρS calculated respectively by the total filling height of the packing and from analysis of x-ray tomograms.

the same height. The rods’ volume is obtained by integrating
all the areas occupied in each tomogram like Fig. 1(d). The
corresponding ρS is shown in Fig. 2(b). It is obvious that
other than a scaling factor, ρH and ρS show very consistent
behavior for the different � we measured. We also attempted
to fit ρH using both Eqs. (1) and (2), and the results are shown
in Fig. 3(b). The KWW law yields a consistently better fit
as compared to the inverse logarithmic law. So we chose
to fit ρH using the KWW law for all �. The fitting results
are shown in Table I. The stretching exponent β = 0.35 ±
0.05 is consistent with previous measurements [21,22]. It
is worth noting that our experimental configuration is very
similar to the Chicago setup [19] in which the strong boundary
effect prevents the occurrence of convection. We confirmed
the absence of convection by ink labeling several rods to
watch their movements under tapping and found no evidence
of convection. The good fit of the relaxation dynamics with
the KWW law implies a close analogy with thermal glassy
behavior [22].

The orientation of each rod within the x-ray tomography
reconstructed region can be obtained by an image processing
program. As a result, we can directly monitor the structural
evolution of the vertical ordering process by calculating the
orientational order parameter

S = 〈cos θi〉 (3)

as function of tap number t , where θi is defined as the angle
between the long axis of the rod and the vertical axis. θi is
limited to the range of 0◦–90◦. S is obtained by averaging
over all rods within the reconstructed region. This definition
of S is similar to the ordinary nematic order parameter
[25–27].

Figure 4 shows the evolution of S as a function of t for
different �. The ordering process measured by S shows a much
clearer trend as compared to ρH : S increases slowly when
t < 102 and begins to increase rapidly when t > 102. At t =
104, it either continues increasing when � is small or saturates
at a value when � is large. The final orders as measured by
Sf at different �, which are shown in Fig. 4(b), are consistent
with the ρH and ρS measurements. It suggests that the increase
of the packing density is accompanied by an increase of the
vertical order. The packing reaches maximum order when
� = 2.37. At � = 1.56 or � = 1.89, the order does not saturate
after 104 times of tapping, which suggests that the time for the
system to reach steady state is beyond our experimental time
scale.

We also carried out the fitting of the evolution of S using
Eqs. (1) and (2) by simply replacing ρ with S and the results
are shown in Fig. 3(a); the KWW law also shows consistently
better fit than the inverse logarithmic law. In Fig. 4(a),
the fitting results for different � using the KWW law is

FIG. 3. (Color online) Comparisons of the fitting of (a) orientational order parameter S and (b) packing density ρH as a function of the
tapping number t at � = 3.41 using both KWW stretched-exponential and inverse logarithmic laws.
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TABLE I. Fitting results of the orientational order parameter and
packing density using Eq. (2) at different tapping intensities.

� � τ (taps) β

S 1.89 894 ± 124 0.7 ± 0.1
2.37 734 ± 62 1.4 ± 0.2
3.41 232 ± 22 1.0 ± 0.1
5.26 166 ± 17 1.3 ± 0.2
8.39 101 ± 24 1.5 ± 0.8
9.28 129 ± 10 1.3 ± 0.2

ρ 2.37 784 ± 312 0.30 ± 0.05
3.41 325 ± 82 0.37 ± 0.04

shown, and the corresponding fitting parameters are shown in
Table I. One of the important points worth noting is that
although S and ρH show very similar relaxation time constants
τ at the same �, their stretching exponents β are clearly
different, with β ranging from 0.3 to 0.4 for ρH and from
0.9 to 1.6 for S.

IV. BOUNDARY EFFECT ON ORDERING

Our experimental configuration is similar to that of the
Chicago group’s [19]. In this configuration, it is presumed that
the boundary plays an important role in inducing the global
order which is absent in the Rennes group’s setup [22].

To study the boundary effect upon the ordering process in
more detail, we divided the tube’s interior into three zones by
area proportion 2:1:1 from the border to the center. Rods are
grouped into different zones by their center-of-mass locations.
Figure 5 shows the fits of S for three zones using the same
KWW law as Eq. (2). The corresponding fitting results are
shown in Table II. It is evident that the relaxation time τ in
general increases from the tube’s border to the center, which
suggests that the boundary rods order faster than the interior
ones. So a phenomenological ordering process happens as
follows: the boundary makes the rods which are in contact with
it to order vertically first; subsequently, the order gradually
propagates into the interior through the rods’ intrinsic tendency
to align with each other [18].

V. SLOW DYNAMICS

The slow relaxation towards ordering is manifested by
the large relaxation time τ for all �. In the compaction
process, the tapping intensity � works like an effective
temperature in generating structural rearrangements which
lead to compaction. Interestingly, similar to thermal glassy
systems, relaxation time τ versus � follows an Arrhenius
behavior

τ = τ0 exp(�0/�), (4)

where τ0 and �0 are the characteristic relaxation time and
tapping intensity. The fitting results are shown in Fig. 6 with
τ0 = 66 ± 12(taps) and �0 = 5.1 ± 0.6.

The Arrhenius behavior is consistent with our other exper-
imental observations: at small �, the ordering time increases
rapidly and the packing cannot achieve steady state over our
experimental time scale; when � is large, the system can reach
a steady state since the tapping is energetic enough for the
system to explore the phase space.

It has been suggested that the tapping-induced ordering
is determined by the diffusion of defect particles and the
corresponding ordering time scale is determined by the
particles’ mobility or random velocity [21,28]. We tried to
verify this mechanism by measuring the rods’ random motions
in the current study. It is worth noting that it is the random and
not the overall average motion that drives the rearrangements
of the rods which lead to compaction. In the current setup,
the random velocity V of each rod is not a directly measurable
quantity. Instead, we estimate each rod’s V by its relative
displacement within the time interval of one tap (1/30 s).
Due to the identical nature of the rods, it is difficult to match
the same rods after tapping through image processing, espe-
cially when � is large. To prevent false matches, we coated
several rods with thin layers of iodine powders which can
induce strong x-ray absorption; these rods are distinguished
from the rest on the projection images as shown in Fig. 7.
To calculate the relative displacements of these labeled rods
during one tap, the tube was rotated along the vertical axis
and the projection images were taken at 0◦ and 90◦, from
which the three coordinates of the center of mass of the
labeled rods can be identified. By taking the projection images
at exactly the same two orientations before and after one

FIG. 4. (Color online) (a) Orientational order parameter S as a function of tapping number t , for different tapping intensities and the
corresponding fitting by the KWW law. (b) Final orientational order parameter Sf as a function of vibration intensity.
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FIG. 5. (Color online) Orientational order parameter S and the corresponding fitting by the KWW law, as a function of tapping number
t , for three zones at different tapping intensities (r is the distance from the center,

√
2R/2 < r < R represents the zone near the boundary,

R/2 < r <
√

2R/2 represents the middle zone, and 0 < r < R/2 represents the central zone).

tap, the displacements of the center of mass of labeled rods
along all three Cartesian coordinates can be calculated. The
measurements were repeated around ten times at each �. In the
current experiment, we focus on the initial random velocities
of the rods during the first tap after preparation. So the tube
was emptied and the packing was prepared freshly after each
measurement.

In Fig. 8, the histograms show the distributions of V

measured at different �. It is obvious that there exists a large
dispersion of V for all �. There is a large dispersion of the
heterogeneous dynamics in colloidal and granular systems in
which the relaxation dynamics is mostly determined by a few
very fast-moving particles [29,30]. We can calculate the mean
random velocity 〈V 〉 of all rods for different � by taking
a simple average of all measurements. The corresponding
〈V 〉 as a function of � is shown in Fig. 9. Despite the
large dispersion in V , 〈V 〉 increases as � increases. It is

TABLE II. Fitting results of the relaxation time of three zones
for different tapping intensities using Eq. (2). R = 5 mm is the inner
radius of the container.

� τ (taps)
√

2R/2 < r < R R/2 < r <
√

2R/2 0 < r < R/2

1.55 996 ± 154 1522 ± 333 4068 ± 474
1.89 1076 ± 775 1023 ± 246 1418 ± 189
2.37 661 ± 94 774 ± 42 992 ± 138
3.41 245 ± 105 337 ± 129 296 ± 54

interesting to note, if we can assume the ordering process
is a defect-controlled simple diffusion process [21,28], we can
use 〈V 〉 to estimate the average length scale a rod can diffuse
over the relaxation time τ for different �. It turns out that
this length scale is about two to three times the length of the
rod for all �, although this reasoning is an oversimplification
since obviously the ordering process is controlled by both
translational and rotational degrees of freedom and there is no
guarantee of energy equipartition among them. However, the

FIG. 6. (Color online) Fitting of the relaxation time τ as a function
of the inverse tapping intensity to an Arrhenius behavior as in Eq. (4).
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FIG. 7. X-ray projection images of the iodine-labeled rods taken
at two perpendicular orientations before and after one tap at � = 2.37.
[(a),(b)] 0◦and 90◦before tapping. [(c),(d)] 0◦and 90◦after tapping.

presumption of a simple diffusion process [28] is compatible
with our experimental observations.

We also calculated the mean random kinetic energy of the
rods using

Ek = 〈mV 2/2〉, (5)

where m is the mass of the rod. Ek is only around several
percent of the gravitational potential energy mgL/2 of a rod
when it aligns vertically [31]. The overall average kinetic
energy gained for each rod from one tap is

Uexp = mA2ω2/2 = m�2g/2ω2, (6)

where ω is the angular frequency of the tapping. Comparing
the random kinetic energy with the overall kinetic energy we
arrive at Ek/Uexp = 0.042. So only a very small fraction of
the input energy is turned into the random motion of the rods.

VI. COORDINATION NUMBER

The coordination number and the associated free volume
of each particle were essential in the statistical description of
granular packings [32,33]. In the current study, we analyzed
the average coordination number 〈Z〉 by directly counting the
contacting neighbors through a direct structure analysis.

The coordination number in spherical granular packings
has been extensively studied [32]. In spherical packings, using
an isostatic argument, 〈Z〉 equals 2N for frictionless particles
and N + 1 for frictional particles, where N is the degree of
freedom. A similar reasoning has been applied to rods [34]:
the corresponding 〈Z〉 equals 10 in the frictionless case and 6
in the frictional case, in which we have assumed that N = 5
for rods.

The coordination number Z for the rod packing has been
measured previously following the similar technique by Bernal

FIG. 8. Histograms of the distributions of random velocities of
labeled rods for different �.

[35,36]. In the current study, we directly obtain Z and its
distribution using noninvasive structural information alone.

FIG. 9. (Color online) Mean random velocity 〈V 〉 as a function
of vibration intensity �.
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FIG. 10. (Color online) (a) Coordination number Z as a function of the normalized minimum distance parameter λ for several tapping
numbers at � = 7.23. Solid lines are the fitting results using Eq. (7). (b) Average coordination number 〈Z〉 as a function of the tapping number
for different tapping intensities. (c) Probability distribution functions of coordination number Z. (d) Corresponding averages and variances as
a function of the tapping number at � = 7.23.

Through image analysis, the center of mass and the orientation
of all rods can be extracted. Two rods are considered contacting
neighbors if the minimum distance r between their finite-
length centerlines equals their diameter d. In practice, this
criteria is very difficult to implement due to the uncertainty in
the determination of the rods’ center of mass, orientation, and
a size distribution of the rods. We adopted a similar technique
from a previous study for the determination of Z [9]: First,
the minimum distance r between a rod and any other rod
has been calculated, and it is normalized by d in getting
the normalized minimum distance parameter λ = r/d. Two
rods are considered contacting neighbors if their normalized
distance is smaller than some value of λ. In the ideal case,
Z as a function of λ will show an abrupt jump from zero
at λ = 1 to the ideal coordination number value and then
increase gradually as λ increases. In reality, Z displays a much
more gradual increase around λ = 1 as shown in Fig. 10(a).
Therefore, in practice, a small Gaussian distribution of λ has
been assumed. The resulting Z versus λ can then be well fitted
by a complementary error function assuming the form

Z(λ) = 〈Z〉√
2π

∫ ∞

(dm−λd)/ξ
exp

(
− t2

2

)
dt, (7)

where ξ is the variance of the Gaussian distribution and dm

is the fitted actual average minimum distance between rods.
The fitting results for several tapping numbers at � = 7.23
are shown in Fig. 10(a). The average coordination number
〈Z〉 and the probability distribution function of Z can also be
obtained for the rods within our reconstructed image region.
One thing to note is that in the above analysis, we have been

very careful by only using rods which have no contacts with
the tube boundary and at the same time are away from the top
and bottom of the imaging window. As shown in Fig. 10(b),
the average coordination number 〈Z〉 spans a range from 6 to
8 as function of t for different �. There is a certain increasing
trend of 〈Z〉 as t increases. However, due to the small number
of rods in our imaging window, this trend is not conclusive. An
average coordination number value from 6 to 8 is consistent
with a frictional rod packing with medium aspect ratios [36].
Figure 10(c) shows the probability distribution functions of
the coordination number Z for different tapping numbers t at
� = 7.23. The results of a simple Gaussian fit are shown in
Fig. 10(d) with the corresponding standard deviation σZ lying
in the range from 1.4 to 2.2.

VII. CONCLUSION

In conclusion, we have carried out a preliminary study
of the compaction process of rods under tapping using
x-ray tomography. We directly measured the evolution of
the orientational order parameter, with the local and global
packing densities as functions of the tapping number for
different tapping intensities. The slow relaxation dynamics
can be well fitted using a KWW-type stretched-exponential
law. The corresponding relaxation time vs tapping intensity
follows an Arrhenius behavior. After measuring the mean
velocity of the rods gained from one tap, we found that the
ordering process can be well described by a diffusive process,
with the tube boundary rods order faster than the interior ones.
The average coordination number has also been measured,
which spans a range from 6 to 8.
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